Developmental trajectories of children’s symbolic numerical magnitude processing skills and associated cognitive competencies

2018 
Abstract Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3 years of primary education (5–8 years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children’s ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children’s development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children’s arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    16
    Citations
    NaN
    KQI
    []