Active dynamic isolation and pointing control system design for ACCESS

2010 
Current concepts for some future for space based astronomical observatories require extraordinary stability with respect to pointing and jitter disturbances. Exoplanet finding missions with internal coronagraphs require pointing stability of <10nrad 3σ (<2mas, 3σ). Closed-loop active dynamic isolation at the interface between a telescope and the spacecraft (where reaction wheels are the primary jitter source) can attain these requirements when incorporated with a robust overall pointing control system architecture which utilizes information from IRUs, star-trackers, and steering mirrors. ITT has developed a high TRL Active Isolation Mount System (AIMS) and through analyses and hardware test-bed work demonstrated that these stringent pointing and dynamic stability can be met for the Actively-Corrected Coronagraph for Exoplanet System Studies (ACCESS) [1] observatory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []