Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability

2020 
High efficiency and environmental stability are mandatory performance requirements for commercialization of perovskite solar cells (PSCs). Herein, efficient cm-scale PSCs with improved stability were achieved by incorporating an additive-free 2,2’,7,7’-tetrakis[N,N-di(p-methoxyphenyl)amino]-9,9’-spirobifluorene (spiro-OMeTAD) hole transporting material (HTM) through simply substituting the usual chlorobenzene solvent with pentachloroethane (PC). A stabilized power conversion efficiency of 16.1% under simulated AM 1.5G 1-sun illumination with an aperture of 1.00 cm2 was achieved for PSCs using an additive-free spiro-OMeTAD layer cast from PC. X-ray analysis suggests chlorine radicals from pentachloroethane transfer partially to spiro-OMeTAD and retain in the HTM film, resulting of conductivity improvement. Moreover, unencapsulated PSCs having cm-scale active area cast from PC retained >70% of their initial PCE after aging at 80 °C for 500 h, in contrast with less than 20% retention for control devices. Mor...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    13
    Citations
    NaN
    KQI
    []