Implementation of Deterministically-Derived Hydrostatigraphic Units into a 3D Finite Element Model at the Lawrence Livermore Laboratory Superfund Site

2001 
Lawrence Livermore National Laboratory (LLNL) is a large Superfund site in California that is implementing an extensive ground water remediation program. The site is underlain by a thick sequence of heterogeneous alluvial sediments. Defining ground-water flow pathways in this complex geologic setting is difficult. To better evaluate these pathways, a deterministic approach was applied to define hydrostratigraphic units (HSUS) on the basis of identifiable hydraulic behavior and contaminant migration trends. The conceptual model based on this approach indicates that groundwater flow and contaminant transport occurs within packages of sediments bounded by thin, low-permeability confining layers. To aid in the development of the remediation program, a three-dimensional finite-element model was developed for two of the HSUS at LLNL. The primary objectives of this model are to test the conceptual model with a numerical model, and provide well field management support for the large ground-water remediation system. The model was successfully calibrated to 12 years of ground water flow and contaminant transport data. These results confirm that the thin, low-permeability confining layers within the heterogeneous alluvial sediments are the dominant hydraulic control to flow and transport. This calibrated model is currently being applied to better manage the large site-wide ground water extractionmore » system by optimizing the location of new extraction wells, managing pumping rates for extraction wells, and providing performance estimates for long-term planning and budgeting.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []