ProcessingO-glycan core 1, Galβ1-3GalNAcα-R. Specificities of core 2, UDP-GlcNAc: Galβ1-3GalNAc-R(GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase and CMP-sialic acid:Galβ1-3GalNAc-R α3-sialyltransferase

1993 
To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Galβ1-3GalNAc-R(GlcNAc to GalNAc) β6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 β6-GlcNAc-T) and CMP-sialic acid: Galβ1-3GalNAc-R α3-sialyltransferase (EC 2.4.99.4; α3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 β6-GlcNAc-T activity; core 2 β6-GlcNAc-T from mucin secreting tissue (named core 2 β6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAcβ1-6(GlcNAcβ1-3)GalNAc-R] and blood group I [GlcNAcβ1-6(GlcNAcβ1-3)Galβ-R] branches; core 2 β6-GlcNAc-T in leukemic cells (named core 2 β-GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 β6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Galβ1-3GalNAcα-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. α3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Galβ1-3GalNAcα-Bn. Galβ1-3(6-deoxy)GalNAcα-Bn and 3-deoxy-Galβ1-3GalNAcα-Bn competitively inhibited core 2 β6-GlcNAc-T and α3-sialyltransferase activities, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    51
    Citations
    NaN
    KQI
    []