Novel Dyes Design Based on First Principles and the Prediction of Energy Conversion Efficiencies of Dye-Sensitized Solar Cells.

2021 
With the depletion of fossil energy, solar energy has gradually attracted people's attention. Dye-sensitized solar cells have developed rapidly in recent years due to their low cost and high conversion efficiency. In this article, based on the theoretical research on the photovoltaic parameters of DSSCs in the early stages of the research team, we have made an accurate prediction of J sc, V oc, and PCE of C286. (The error in our predicted PCE values was 3.33% relative to the experiment.) Also, we further designed a series of new dyes CH1-CH5 by introducing donors and co-acceptors with C286-C288 as the prototype using the DFT/TDDFT method. The PCE of the designed dyes CH2-CH5 exceed the given dye C286, especially the CH3 and CH4 obtained the PCE of 26.2 and 14.5%. This indicates the proposed dyes offer a dramatic improvement on PCE for DSSC devices. Moreover, the designed dyes such as CH3 and CH4 have great potential to be applied to photovoltaic applications, further enabling the design of novel, highly efficient photoactive materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []