A third-order silicon racetrack add-drop filter with a moderate feature size

2018 
In this work, we design and fabricate a highly compact third-order racetrack add-drop filter consisting of silicon waveguides with modified widths on a silicon-on-insulator (SOI) wafer. Compared to the previous approach that requires an exceedingly narrow coupling gap less than 100nm, we propose a new approach that enlarges the minimum feature size of the whole device to be 300 nm to reduce the process requirement. The three-dimensional finite-difference time-domain (3D-FDTD) method is used for simulation. Experiment results show good agreement with simulation results in property. In the experiment, the filter shows a nearly box-like channel dropping response, which has a large flat 3-dB bandwidth (~3 nm), relatively large FSR (~13.3 nm) and out-of-band rejection larger than 14 dB at the drop port with a footprint of 0.0006 mm 2 . The device is small and simple enough to have a wide range of applications in large scale on-chip photonic integration circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []