Electrically switchable reflection holograms formed using two-photon photopolymerization

2002 
Two-photon holographic photopolymerization was used to form switchable Bragg gratings composed of layers of phase-separated liquid-crystal (LC) domains interspersed with cured, crosslinked polymer. These holographic polymer-dispersed liquid crystals form a periodic structure which diffracts red light due to nanostructured planes ∼250 nm in spacing. These structures were formed by interfering two 90-fs pulses coherently upon a reactive syrup consisting of acrylate monomer, liquid crystal, and a two-photon dye. The large two-photon cross-section allows excitation of the two-photon dye that results in electron transfer between this dye and the monomer. Diffraction efficiencies of approximately 10% were obtained, which can be modulated using an electric field applied across the film. Switching speeds below 1 ms were observed due in part to the small size of the LC domains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    17
    Citations
    NaN
    KQI
    []