Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space

2016 
Traumatic spinal cord contusions lead to loss of quality of life, but their pathomechanisms are not fully understood. Previous studies have underlined the contribution of the cerebrospinal fluid in spinal cord protection. However, it remains unclear how important the contribution of the cerebrospinal fluid is relative to other factors such as the white/gray matter ratio. A finite element model of the spinal cord and surrounding morphologic features was used to investigate the spinal cord contusion mechanisms, considering subarachnoid space and white/gray matter ratio. Two vertebral segments (T6 and L1) were impacted transversely at 4.5ms-1, which demonstrated three major results: While the presence of cerebrospinal fluid plays a significant contributory role in spinal cord protection (compression percentage decreased by up to 19%), the arachnoid space variation along the spine appears to have a limited (3% compression decrease) impact; Differences in the white and gray matter geometries from lumbar to thoracic spine levels decrease spinal cord compression by up to 14% at the thoracic level ; Stress distribution in the sagittal spinal cord section was consistent with central cord syndrome, and local stress concentration on the anterior part of the spinal cord being highly reduced by the presence of cerebrospinal fluid. The use of a refined spinal cord finite element method showed that all the geometrical parameters are involved in the spinal cord contusion mechanisms. Hence, spinal cord injury criteria must be considered at each vertebral level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    161
    Citations
    NaN
    KQI
    []