Fast Switching Properties and Ion Diffusion Behavior of Polytriphenylamine Derivative with Pendent Ionic Liquid Unit

2018 
A novel triphenylamine derivative-linked ionic liquid unit, 1-(6-((4-(bis(4-(thiophen-2-yl)phenyl)amino)benzoyl)oxy)hexyl)-3-methyl-imidazolium tetrafluoroborate (TTPAC6IL-BF4), was designed and synthesized successfully, and its corresponding polymer PTTPAC6IL-BF4 was obtained by the electropolymerization method. The highest occupied molecular orbital energy band of TTPAC6IL-BF4 is higher and the onset oxidative potential lower compared with that of 6-bromohexyl 4-(bis(4-(thiophen-2-yl)phenyl)amino) benzoate (TTPAC6Br) without modifying the ionic liquid unit. Both PTTPAC6IL-BF4 and PTTPAC6Br show similar color change and optical contrast under different redox states. However, PTTPAC6IL-BF4 presents a faster electrochromic switching time than PTTPAC6Br owing to the improved ionic conductivity and ion diffusion coefficient with the introduction of a pendent ionic liquid unit. It is more intriguing that PTTPAC6IL-BF4 could show electrochromism under different potentials even without supplying any additional ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    25
    Citations
    NaN
    KQI
    []