Large scale graphene/h-BN heterostructures obtained by direct CVD growth of graphene using high-yield proximity-catalytic process

2018 
We present a transfer-free process for the rapid growth of graphene on hexagonal boron nitride (h-BN) flakes via chemical vapor deposition. The growth of graphene on top of h-BN flakes is promoted by the adjacent copper catalyst. Full coverage of half-millimeter-sized h-BN crystals is demonstrated. The proximity of the copper catalyst ensures high-yield with a growth rate exceeding 2 μm min−1, which is orders of magnitude above what was previously reported on h-BN and approaches the growth rate on copper. Optical and electron microscopies along with Raman mapping indicates a two-step growth mechanism, leading to the h-BN being first covered by discontinuous graphitic species prior to the formation of a continuous graphene layer. Electron transport measurements confirm the presence of well-crystallized and continuous graphene, which exhibits a charge carrier mobility that reaches 2.0 × 104 cm2 V−1 s−1. Direct comparison of the mobility with graphene/h-BN devices obtained by wet transfer confirms an enhanced charge neutrality for the in situ grown structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    17
    Citations
    NaN
    KQI
    []