Theoretical and experimental investigations of electron emission in C6+ + H2O collisions

2009 
Abstract Theoretical differential and total cross sections for the direct ionization process of water vapour by 6 MeV/u C 6+ ions are compared to new experimental measurements performed by the dedicated apparatus already used for measuring the energy and angular distributions of secondary electrons emitted from water vapour by fast heavy-ion impact [D. Ohsawa, H. Kawauchi, M. Hirabayashi, Y. Okada, T. Homma, A. Higashi, S. Amano, Y. Hashimoto, F. Soga, Y. Sato, Nucl. Instr. and Meth. B 227 (2005) 431]. In the present work, ab initio calculations have been carried out in the first Born approximation by using an accurate molecular wave function for describing the initial bound state of the target. The calculated cross sections exhibit good agreement with the present experimental measurements and compare relatively well to the existing semi-empirical results over the entire angular and energy ranges investigated here. Free from any adjustable parameter, the proposed theoretical approach describes in detail the complete kinematics of the water molecule ionization process by highly energetic carbon ions, and could therefore be easily used for modelling the heavy charged-particle transport in the biological matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    74
    Citations
    NaN
    KQI
    []