A pH-responsive colorimetric detection of human telomerase RNA based on a three-dimensional DNA amplifier

2020 
Abstract Human telomerase RNA (hTR), one of the essential components of telomerase, serves as a reverse template to add repeated segments of (TTAGGG)n to the 3' end of telomere DNA for maintaining the length of telomere DNA, endowing cells indefinite proliferation capability. Expression level of hTR displays a close relationship with tumor grade. Inspired by the mechanism of urease hydrolyzing urea to release ammonia and elevate the pH value of the sample solution, we developed a facile and novel pH-responsive colorimetric strategy for hTR detection by incorporating catalyzed hairpin assembly (CHA) onto the magnetic beads (MBs). The CHA process was initiated by target hTR and recycled via toehold binding and branch migration, thereby abundant urease being anchored on the surface of MBs. After separated by an external magnetic field, the assembled urease catalyzed the hydrolysis of urea to release a large amount of ammonia, which gave rise to a remarkable pH signal. Thus, quantification of hTR was achieved by measuring the solution pH via a hand-held pH meter or visualizing the solution color with the assistance of the pH indicator phenol red. The proposed sensing platform exhibits excellent performance toward hTR with a detection limit as low as 41 pM and a remarkable sequence selectivity, being able to differentiate a single mismatch in the target DNA. The pH-responsive colorimetric sensing platform contributes to introducing pH-related portable strategies into the detections of numerous universal biomarkers such as nucleic acids and proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    4
    Citations
    NaN
    KQI
    []