Type I and Type III IFN Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures

2020 
The newly emerged human coronavirus, SARS-CoV-2, has caused a pandemic of respiratory illness. The innate immune response is critical for protection against Coronaviruses. However, little is known about the interplay between the innate immune system and SARS-CoV-2. Here, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by pro-inflammatory cytokines and chemokine induction, including IL-6, TNFα, CXCL8. We also identified NF-κB and ATF4 transcription factors as key drivers of this pro-inflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III IFN induction during SARS-CoV-2 infection. Pre-treatment or post-treatment with type I and III IFNs dramatically reduced virus replication in pHAE cultures and this corresponded with an upregulation of antiviral effector genes. Our findings demonstrate that SARS-CoV-2 induces a strong pro-inflammatory cytokine response yet blocks the production of type I and III IFNs. Further, SARS-CoV-2 is sensitive to the effects of type I and III IFNs, demonstrating their potential utility as therapeutic options to treat COVID-19 patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    22
    Citations
    NaN
    KQI
    []