The discrepancy of $(n_kx)$ with respect to certain probability measures

2018 
Let $(n_k)_{k=1}^{\infty}$ be a lacunary sequence of integers. We show that if $\mu$ is a probability measure on $[0,1)$ such that $|\widehat{\mu}(t)|\leq c|t|^{-\eta}$, then for $\mu$-almost all $x$, the discrepancy $D_N(n_kx)$ satisfies \begin{equation*} \frac{1}{4} \leq \limsup_{N\to\infty}\frac{N D_N(n_kx)}{\sqrt{N\log\log N}} \leq C \end{equation*} for some constant $C>0$, proving a conjecture of Haynes, Jensen and Kristensen. This allows a slight improvement on their previous result on products of the form $q\|q\alpha\| \|q\beta-\gamma\| $.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []