Multiscale Model Predictive Control of Battery Systems for Frequency Regulation Markets using Physics-Based Models.

2020 
We propose a multiscale model predictive control (MPC) framework for stationary battery systems that exploits high-fidelity models to trade-off short-term economic incentives provided by energy and frequency regulation (FR) markets and long-term degradation effects. We find that the MPC framework can drastically reduce long-term degradation while properly responding to FR and energy market signals (compared to MPC formulations that use low-fidelity models). Our results also provide evidence that sophisticated battery models can be embedded within closedloop MPC simulations by using modern nonlinear programming solvers (we provide an efficient and easy-to-use implementation in Julia). We use insights obtained with our simulations to design a low-complexity MPC formulation that matches the behavior obtained with high-fidelity models. This is done by designing a suitable terminal penalty term that implicitly captures longterm degradation. The results suggest that complex degradation behavior can be accounted for in low-complexity MPC formulations by properly designing the cost function. We believe that our proof-of-concept results can be of industrial relevance, as battery vendors are seeking to participate in fast-changing electricity markets while maintaining asset integrity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []