Non-linear material characterization and numerical modeling of cross-ply basalt/epoxy laminate under low velocity impact
2020
Abstract The low velocity impact behavior of basalt/epoxy composites, seen as an eco-friendly replacement of glass-epoxy composites, has not been studied systematically so far. Here, the elastic elasto-plastic properties, strengths, intralaminar and interlaminar fracture energies were determined. The intralaminar energies were determined using compact tension and compression tests. The elasto-plastic properties needed in the plastic potential were determined using off-axis test. These properties are used in Finite Element (FE) code with an elasto-plastic damage model developed earlier to simulate the impact response of cross-ply laminates basalt/epoxy laminates. Low velocity impact (LVI) experiments at 10 J, 20 J and 30 J are performed on these composites. The FE simulation is successful in capturing force, energy, deflection histories and damage zones showing a close match to the experiments. A comparison of impact force history and damage area (ultrasonic C-scan) of basalt-epoxy laminates with glass epoxy laminates having same volume fraction shows nearly similar peak forces but the major axis of the ellipsoidal damage zone was bigger in glass/epoxy laminates.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
4
Citations
NaN
KQI