The effect of gas-injector location on bubble formation in liquid cross flow

2010 
Liquid flows incorporating small-size bubbles play a vital role in many industrial applications. In this work, an experimental investigation is conducted on bubble formation during gas injection from a microtube into the channel of a downward liquid cross flow. The tip of the air injector has been located at the wall (wall orifice) and also at several locations from the wall to channel centerline (nozzle injection). The size, shape, and velocity of the bubbles along with liquid velocity field are measured using a shadow-particle image velocimetry/particle tracking velocimetry system. The process of bubble formation for the wall orifice and the nozzle injection configurations is physically explained. The effect of variation in water and air flow rates on the observed phenomena is also investigated by considering water average velocities of 0.46, 0.65, and 0.83 m/s and also air average velocities of 1.32, 1.97, 2.63, and 3.29 m/s. It was observed that shifting the air injector tip toward the center of the c...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    13
    Citations
    NaN
    KQI
    []