Ultrafast Distributed Coloring of High Degree Graphs.

2021 
We give a new randomized distributed algorithm for the $\Delta+1$-list coloring problem. The algorithm and its analysis dramatically simplify the previous best result known of Chang, Li, and Pettie [SICOMP 2020]. This allows for numerous refinements, and in particular, we can color all $n$-node graphs of maximum degree $\Delta \ge \log^{2+\Omega(1)} n$ in $O(\log^* n)$ rounds. The algorithm works in the CONGEST model, i.e., it uses only $O(\log n)$ bits per message for communication. On low-degree graphs, the algorithm shatters the graph into components of size $\operatorname{poly}(\log n)$ in $O(\log^* \Delta)$ rounds, showing that the randomized complexity of $\Delta+1$-list coloring in CONGEST depends inherently on the deterministic complexity of related coloring problems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []