Comparison of time-frequency-analysis techniques applied in building energy data noise cancellation for building load forecasting: A real-building case study

2020 
Abstract Time-frequency analysis that disaggregates a signal in both time and frequency domain is an important supporting technique for building energy analysis such as noise cancellation in data-driven building load forecasting. There is a gap in the literature related to comparing various time-frequency-analysis techniques, especially discrete wavelet transform (DWT) and empirical mode decomposition (EMD), to guide the selection and tuning of time-frequency-analysis techniques in data-driven building load forecasting. This article provides a framework to conduct a comprehensive comparison among thirteen DWT/EMD techniques with various parameters in a load forecasting modeling task. A real campus building is used as a case study for illustration. The DWT and EMD techniques are also compared under various data-driven modeling algorithms for building load forecasting. The results in the case study show that the load forecasting models trained with noise-cancelled energy data have increased their accuracy to 9.6% on average tested under unseen data. This study also shows that the effectiveness of DWT/EMD techniques depends on the data-driven algorithms used for load forecasting modeling and the training data. Hence, DWT/EMD-based noise cancellation needs customized selection and tuning to optimize their performance for data-driven building load forecasting modeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    5
    Citations
    NaN
    KQI
    []