Dynamics of 2D Incompressible Non-autonomous Navier–Stokes Equations on Lipschitz-like Domains

2019 
This paper concerns the tempered pullback dynamics of 2D incompressible non-autonomous Navier–Stokes equations with a non-homogeneous boundary condition on Lipschitz-like domains. With the presence of a time-dependent external force f(t) which only needs to be pullback translation bounded, we establish the existence of a minimal pullback attractor with respect to a universe of tempered sets for the corresponding non-autonomous dynamical system. We then give estimates on the finite fractal dimension of the attractor based on trace formula. Under the additional assumption that the external force is perturbed from a stationary force by a time-dependent perturbation, we also prove the upper semi-continuity of the attractors as the non-autonomous perturbation vanishes. Lastly, we investigate the regularity of these attractors when smoother initial data are given. Our results are new even for smooth domains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []