Structural, textural, morphological, magnetic and electromagnetic study of Cu-doped NiZn ferrite synthesized by pilot-scale combustion for RAM application

2020 
Abstract The synthesis of the Ni0.5-xZn0.5-xCu2xFe2O4 (x = 0; 0.10 and 0.15) ferrite with the differential of pilot-scale production by the combustion reaction method was investigated for RAM application purposes. Combustion temperatures ranging from 682°C to 738°C were observed. All ferrites were sintered at 1200°C for 1h. A comprehensive study of the influence of substitution with Cu2+ in a partial and proportional way to the Ni2+ and Zn2+ ions, doping mode little reported in the literature, and also of the sintering process over the structural, textural, morphological, magnetic and electromagnetic properties of NiZnCu ferrites was performed. The XRD patterns of the ferrites as synthesized revealed the formation of the cubic structure of the inverse spinel as majoritary phase, and traces of hematite and zinc oxide as segregated phases. After sintering, it was proven the single-phase formation of cubic spinel ferrite structure. The introduction of Cu led to a reduction in the lattice parameter, whose values ranged from 8.337 to 8.385 A. The EDX results confirm the composition of oxides. The textural and morphological analyses confirmed the densest characteristic, with increase of particle size and reducing of surface area and pore volume after Cu-doping. All ferrites showed characteristics of soft ferrimagnetic material, where the increase in Cu content contributed to a slight reduction in saturation magnetization, whose values were of ∼22-29 emu/g for the as synthesized ferrites and ∼71-85 emu/g for the sintered ones. The best result of electromagnetic absorption in X-band was presented by the sintered ferrite with 0.3 mol of Cu, reaching an attenuation of 99.8% at 11.5 GHz frequency, thus confirming the efficiency of the pilot-scale combustion synthesis in obtaining a ferrite with great potential for RAM application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    4
    Citations
    NaN
    KQI
    []