Altered MicroRNA Profile in Osteoporosis Caused by Impaired WNT Signaling.

2018 
Context: WNT signaling is fundamental to bone health, and its aberrant activation leads to skeletal pathologies. The heterozygous missense mutation p.C218G in WNT1, a key WNT pathway ligand, leads to severe early-onset and progressive osteoporosis with multiple peripheral and spinal fractures. Despite the severe skeletal manifestations, conventional bone turnover markers are normal in mutation-positive patients. Objective: This study sought to explore the circulating microRNA (miRNA) pattern in patients with impaired WNT signaling. Design and Setting: A cross-sectional cohort study at a university hospital. Participants: Altogether, 12 mutation-positive (MP) subjects (median age, 39 years; range, 11 to 76 years) and 12 mutation-negative (MN) subjects (35 years; range, 9 to 59 years) from two Finnish families with WNT1 osteoporosis due to the heterozygous p.C218G WNT1 mutation. Methods and Main Outcome Measure: Serum samples were screened for 192 miRNAs using quantitative polymerase chain reaction. Findings were compared between WNT1 MP and MN subjects. Results: The pattern of circulating miRNAs was significantly different in the MP subjects compared with the MN subjects, with two upregulated (miR-18a-3p and miR-223-3p) and six downregulated miRNAs (miR-22-3p, miR-31-5p, miR-34a-5p, miR-143-5p, miR-423-5p, and miR-423-3p). Three of these (miR-22-3p, miR-34a-5p, and miR-31-5p) are known inhibitors of WNT signaling: miR-22-3p and miR-34a-5p target WNT1 messenger RNA, and miR-31-5p is predicted to bind to WNT1 3'UTR. Conclusions: The circulating miRNA pattern reflects WNT1 mutation status. The findings suggest that the WNT1 mutation disrupts feedback regulation between these miRNAs and WNT1, providing insights into the pathogenesis of WNT-related bone disorders. These miRNAs may have potential in the diagnosis and treatment of osteoporosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    41
    Citations
    NaN
    KQI
    []