Nanoelectronic devices based on twisted graphene nanoribbons.

2018 
We argue that twisted graphene nanoribbons subjected to a transverse electric field can operate as a variety of nanoelectronic devices, such as tunable tunnel diodes with current-voltage characteristics controlled by the transverse field. Using the density-functional tight-binding method to address the effects of mechanical strain induced by the twisting, we show that the electronic transport properties remain almost unaffected by the strain in relevant cases and propose a simplified tight-binding model which gives reliable results. The transverse electric field creates a periodic electrostatic potential along the nanoribbon, resulting in a formation of a superlattice-like energy band structure and giving rise to different remarkable electronic properties. We demonstrate that if the nanoribbon geometry and operating point are selected appropriately, the system can function as a field-effect transistor or a device with nonlinear current-voltage characteristic manifesting one or several regions of negative differential resistance. The latter opens possibilities for applications such as an active element of nanoscale amplifiers, generators, and new class of devices with multiple logic states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []