Calculation of Mutual Information for Partially Coherent Gaussian Channels With Applications to Fiber Optics

2011 
The mutual information between a complex-valued channel input and its complex-valued output is decomposed into four parts based on polar coordinates: an amplitude term, a phase term, and two mixed terms. Numerical results for the additive white Gaussian noise (AWGN) channel with various inputs show that, at high signal-to-noise ratio (SNR), the amplitude and phase terms dominate the mixed terms. For the AWGN channel with a Gaussian input, analytical expressions are derived for high SNR. The decomposition method is applied to partially coherent channels and a property of such channels called “spectral loss” is developed. Spectral loss occurs in nonlinear fiber-optic channels and it may be one effect that needs to be taken into account to explain the behavior of the capacity of nonlinear fiber-optic channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    51
    Citations
    NaN
    KQI
    []