Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage
2021
ABSTRACT The bio-nanotechnological fabrication of high-surface-area carbons has attracted widespread interest in supercapacitor applications by using readily-available natural products as raw materials or bio-templates, and is expected to refine on pore accessibility for compact energy storage. Here, a renovated design strategy of semi-biomass interpenetrating polymer network (IPN) derived carbon is demonstrated through physically knitting the biomacromolecule (sodium alginate, SA) polymeric chains into the highly crosslinked resorcinol-formaldehyde (RF) network and subsequent thermochemical conversion. Molecule-level interlacing forces in such IPN efficiently relieve the RF skeleton shrinkage when producing carbon, while the other SA network addresses the macrophase separation issue to sacrifice as an in-knitted porogen and a morphology-directing agent. As a result, porous carbon globules are equipped with moss-like surfaces and interconnected pore architecture for high accessible electrode surface (1013 m2/g), and efficient electrochemical responses are reached with the specific capacitance of 312 F/g at 1 A/g. Taking the advantage of 9 mol/kg NaClO4 complex-solvent electrolyte, the voltage window is extended to 2.4 V, endowing the two-electrode device with the high energy delivery of 32.3 Wh/kg at 240 W/kg.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
9
Citations
NaN
KQI