Modelling of the Effects of Stellar Feedback during Star Cluster Formation Using a Hybrid Gas and N-Body Method

2020 
Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics code FLASH to the N-body code ph4 and the stellar evolution code SeBa using the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisional N-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds and supernovae in FLASH. We use this novel numerical method to simulate the formation and early evolution of open clusters of $\sim 1000$ stars formed from clouds with a mass range of $10^3$-$10^5$ M$_\odot$. Analyzing the effects of stellar feedback on the gas and stars of the natal cluster, we find that our clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H II region shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    136
    References
    19
    Citations
    NaN
    KQI
    []