Luminometric and differential scanning calorimetry (DSC) studies on heat - and radiation inactivation of Bacillus Subtilis luxAB spores

2002 
A bioluminescent derivative of Bacillus subtilis containing a plasmid encoding a luxAB fusion under control of a vegetative promoter and gives bioluminescence upon addition of an exogenous long-chain aldehyde has been used as test organism. Its spore populations have been produced and their heat- and radiation survival curves established. Heat-sensitization effect of pre-irradiation of spores was proven not only by colony counting but also with differential scanning calorimetry. Under a linearly programmed temperature increase, the heat destruction of spores surviving 2.5 kGy gamma irradiation resulted in at a few centigrade lower temperature than that of untreated spores. Heat denaturation endotherms in the DSC-thermogram of irradiated spores were shifted to lower temperatures as well. Comparative turbidimetric, luminometric and phase-contrast microscopic studies of untreated, heat-treated and irradiated spore populations showed that the kinetics of germination and the light emission during germination of radiation-inactivated spores were the same as those of untreated spores, revealing that the pre-formed luciferase enzyme packaged into the spores during sporulation remained intact after an irradiation dose causing 90% decrease in number of colony forming spores. Therefore, in contrast to heat-treated spores, the initial bioluminescence reading upon germination of irradiated spores does not reflect the viable count of their population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    3
    Citations
    NaN
    KQI
    []