Frozen Leg Operation of a Three-Phase Dual Active Bridge Converter

2019 
Three-phase dual active bridge (DAB) topology is a potential alternative for high-power applications when a compact and efficient converter with a bidirectional power transfer capability is desired. In a constructed prototype, high-power SiC modules with dedicated drivers are utilized to achieve high-efficiency and compact size. Each module has two interconnected switches with anti-parallel diodes resembling a converter leg. It is observed that the driver halts the module operation as a result of protective actions such as overcurrent, gate undervoltage, or gate overvoltage. In this frozen leg mode, the module operates as a leg with two diodes until an external hardware signal resets the driver. The converter continues operation but with a reduced performance. Analysis, simulation, and verification of a three-phase DAB converter under a frozen leg operation are considered in this paper. The converter with a frozen leg has two different behaviors at light loads and heavy loads. Consequently, two different analysis methods are developed to solve converter operation in different load conditions. Results show that the power transfer capability is reduced, but this fault mode is nondestructive.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []