sEH promotes macrophage phagocytosis and lung clearance of Streptococcus pneumoniae.

2021 
Epoxyeicosatrienoic acids (EETs) have potent anti-inflammatory properties. Hydrolysis of EETs by soluble epoxide hydrolase (sEH/EPHX2) to less active diols attenuates their anti-inflammatory effects. Macrophage activation is critical to many inflammatory responses; however, the role of EETs and sEH in regulating macrophage function remains unknown. Lung bacterial clearance of S. pneumoniae was impaired in Ephx2-deficient (Ephx2-/-) mice and in mice treated with an sEH inhibitor. The EET receptor antagonist, EEZE, restored lung clearance of S. pneumoniae in Ephx2-/- mice. Ephx2-/- mice had normal lung Il-1β, Il-6 and Tnfα expression and macrophage recruitment to lungs during S. pneumoniae infection; however, Ephx2 disruption attenuated proinflammatory cytokine induction, Tlr2 and Pgylrp1 receptor upregulation and Rac1/2 and Cdc42 activation in PGN-stimulated macrophages. Consistent with these observations, Ephx2-/-macrophages displayed reduced phagocytosis of S. pneumoniae in vivo and in vitro. Heterologous overexpression of TLR2 and PGLYRP1 in Ephx2-/- macrophages restored macrophage activation and phagocytosis. Human macrophage function was similarly regulated by EETs. Together, these results demonstrate that EETs reduce macrophage activation and phagocytosis of S. pneumoniae through down-regulation of TLR2 and PGLYRP1 expression. Defining the role of EETs and sEH in macrophage function may lead to development of new therapeutic approaches for bacterial diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []