Single nucleotide polymorphisms in CXCR1 gene and its association with hepatitis B infected patients in Saudi Arabia

2013 
Background/Aim. This study aims to investigate whether the SNPs of CXCR1 gene, could predict the likelihood of viral persistence and/or disease progression. Material and methods. We investigated the association of two different SNPs (rs2234671, and rs142978743) in 598 normal healthy controls and 662 HBV patients from a Saudi ethnic population. The HBV patients were categorized into inactive carriers (n = 428), active carriers (n = 162), cirrhosis (n = 54) and Cirrhosis-HCC (n = 18) sub-groups. Genetic variants in CXCR1 were determined by polymerase chain reaction (PCR)-based DNA direct sequencing. Results. The frequency of the risk allele ‘C’ for the SNP, rs2234671 was found to be insignificant when the patient group was compared to the uninfected control group, however, a significant distribution of the allele ‘C’ of rs2234671 was observed among active HBV carriers + cirrhosis + cirrhosis - HCC vs. inactive HBV carriers with an OR = 1.631 (95% C.I. 1.016-2.616) and p = 0.032. However, no significant association was observed for rs142978743 when the distribution of risk allele was analyzed among the different patient groups (i.e. inactive carriers, active carriers, cirrhosis and HCC). Furthermore, the most common haplotype, Haplo-1 (AG), was found to have an insignificant frequency distribution between HBV cases and controls, while the same haplotype was found to be significantly distributed when active carriers + cirrhosis + cirrhosis - HCC patients were compared to inactive HBV carriers with a frequency of 0.938 and p = 0.0315. Haplo-2 (AC) was also found to be significantly associated with a frequency of 0.058 and p = 0.0163. Conclusion. The CXCR1 polymorphism, rs2234671 was found to be associated with chronic HBV infection and may play a role in disease activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    8
    Citations
    NaN
    KQI
    []