Evaluating adaptive and predictive power management strategies for optimizing visualization performance on supercomputers

2021 
Abstract Power is becoming an increasingly scarce resource on the next generation of supercomputers, and should be used wisely to improve overall performance. One strategy for improving power usage is hardware overprovisioning, i.e., systems with more nodes than can be run at full power simultaneously without exceeding the system-wide power limit. With this study, we compare two strategies for allocating power throughout an overprovisioned system – adaptation and prediction – in the context of visualization workloads. While adaptation has been suitable for workloads with more regular execution behaviors, it may not be as suitable on visualization workloads, since they can have variable execution behaviors. Our study considers a total of 104 experiments, which vary the rendering workload, power budget, allocation strategy, and node concurrency, including tests processing data sets up to 1 billion cells and using up to 18,432 cores across 512 nodes. Overall, we find that prediction is a superior strategy for this use case, improving performance up to 27% compared to an adaptive strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []