Characterization and Electrochemical Behavior of Graphene-Based Anode for Li-Ion Batteries

2011 
In this study, we investigate the characteristics and electrochemical properties of graphene nanosheets derived from chemical-thermal exfoliation processes of SFG44 synthetic graphite (SFG44-GNS). The characterizations and electrochemical measurements were carried out by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, BET, Raman, rate capability as well as cycling tests and AC impedance. The as-synthesized SFG44-GNS with larger d-spacing of 0.3407 nm exhibits reversible capacity of 626 mAh/g and good rate capability of ~300 mAh/g at 2C rate, which are superior to those of graphite anode. The enhanced electrochemical performance of GNS anode was resulted from larger d-spacing, lower impedance in the interface and enhanced pore volume. The results indicate that graphene-based material is a good candidate for HEV/EV application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    20
    Citations
    NaN
    KQI
    []