Differential long-term effects of MDMA on the serotoninergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice

2008 
Although numerous studies investigated the mechanisms underlying 3,4-methylenedioxymeth- amphetamine (MDMA)-induced neurotoxicity, little is known about its long-term functional conse- quences on 5-HT neurotransmission in mice. This led us to evaluate the delayed effects of MDMA exposure on the 5-HT system, using in-vitro and in-vivo approaches in both 5-HTT wild-type and knock- out mice. Acute MDMA in-vitro application on slices of the dorsal raphe nucleus (DRN) induced concentration-dependent 5-HT release and 5-HT cell firing inhibition. Four weeks after MDMA adminis- tration (20 mg/kg b.i.d for 4 d), a 2-fold increase in the potency of the 5-HT1A receptor agonist ipsapirone to inhibit the discharge of DRN 5-HT neurons and a larger hypothermic response to 8-OH-DPAT were observed in MDMA- compared to saline-treated mice. This adaptive 5-HT1A autoreceptor supersensitivity was associated with decreases in 5-HT levels but no changes of ( 3 H)citalopram binding in brain. Long- term MDMA treatment also induced a 30 % decrease in BrdU labelling of proliferating hippocampal cells and an increased immobility duration in the forced swim test suggesting a depressive-like behaviour induced by MDMA treatment. All these effects were abolished in 5-HTT x/x knock-out mice. These data indicated that, in mice, MDMA administration induced a delayed adaptive supersensitivity of 5-HT1A autoreceptors in the DRN, a deficit in hippocampal cell proliferation and a depressive-like behaviour. These 5-HTT-dependent effects, opposite to those of antidepressants, might contribute to MDMA-induced mood disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    38
    Citations
    NaN
    KQI
    []