Machine Learning and Big Data Provide Crucial Insight for Future Biomaterials Discovery and Research.

2021 
Abstract Machine learning have been widely adopted in a variety of fields including engineering, science, and medicine revolutionizing how data is collected, used, and stored. Their implementation has led to a drastic increase in the number of computational models for the prediction of various numerical, categorical, or association events given input variables. We aim to examine recent advances in the use of machine learning when applied to the biomaterial field. Specifically, quantitative structure properties relationships offer the unique ability to correlate microscale molecular descriptors to larger macroscale material properties. These new models can be broken down further into four categories: regression, classification, association, and clustering. We examine recent approaches and new uses of machine learning in the three major categories of biomaterials: metals, polymers, and ceramics for rapid property prediction and trend identification. While current research is promising, limitations in the form of lack of standardized reporting and available databases complicates the implementation of described models. Herein, we hope to provide a snapshot of the current state of the field and a beginner's guide to navigating the intersection of biomaterials research and machine learning. Statement of significance Machine learning and its methods have found a variety of uses beyond the field of computer science but have largely been neglected by those in realm of biomaterials. Through the use of more computational methods, biomaterials development can be expediated while reducing the need for standard trial and error methods. Within, we introduce four basic models that readers can potentially apply to their current research as well as current applications within the field. Furthermore, we hope that this article may act as a “call to action” for readers to realize and address the current lack of implementation within the biomaterials field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    163
    References
    1
    Citations
    NaN
    KQI
    []