Experimental study of the chip morphology in turning hardened AISI D2 steel

2013 
The study of local mechanisms of material removal is essential in all problems of shaping by machining. Indeed, the mastery of surfaces generated by cutting requires an understanding of cutting mechanisms. The turning of steels with high mechanical properties using the cutting tool, often called “hard turning,” is a new technique for the mechanical industry, and hence the need to understand the cutting mechanisms. The steel type EN X160CrMoV12 treated to 62 HRC (cold work tool steel: AISI D2 with a martensite matrix and distribution of primary and secondary carbides) is the subject of this study. Hard turning tests were carried out for this steel at different cutting conditions, with the aim to understand the mechanism of chip formation in order to be able to obtain the optimal cutting conditions. The chips obtained were examined under a microscope. The observation showed that the chip formation is influenced by cutting conditions. The chips contained a white layer, and this layer was examined under scanning electronic microscope (SEM) to study its variation depending on cutting parameters. The study shown, that cutting forces decrease with the increase of cutting speed. However, ANOVA method was used to establish the effect of the cutting conditions on experimental obtained results. Analysis of plastic deformation of the chip and the shear angle was made according to cutting conditions. Finally, a microhardness test was carried out to relate the mechanical properties and the microstructures of white layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    29
    Citations
    NaN
    KQI
    []