Dietary Carbohydrates Restriction Inhibits The Development Of Cardiac Hypertrophy And Heart Failure.

2020 
AIMS A diet with modified components, such as a ketogenic low-carbohydrate (LC) diet, potentially extends longevity and healthspan. However, how a LC diet impacts on cardiac pathology during hemodynamic stress remains elusive. This study evaluated the effects of a LC diet high in either fat (Fat-LC) or protein (Pro-LC) in a mouse model of chronic hypertensive cardiac remodeling. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction, followed by feeding with the Fat-LC, the Pro-LC, or a high-carbohydrate control diet. After 4 weeks, echocardiographic, hemodynamic, histological and biochemical analyses were performed. LC diet consumption after pressure overload inhibited the development of pathological hypertrophy and systolic dysfunction compared to the control diet. An anti-hypertrophic serine/threonine kinase, GSK-3β, was re-activated by both LC diets; however, the Fat-LC, but not the Pro-LC, diet exerted cardioprotection in GSK-3β cardiac-specific knockout mice. β-hydroxybutyrate, a major ketone body in mammals, was increased in the hearts of mice fed the Fat-LC, but not the Pro-LC, diet. In cardiomyocytes, ketone body supplementation inhibited phenylephrine-induced hypertrophy, in part by suppressing mTOR signaling. CONCLUSIONS Strict carbohydrate restriction suppresses pathological cardiac growth and heart failure after pressure overload through distinct anti-hypertrophic mechanisms elicited by supplemented macronutrients. TRANSLATIONAL PERSPECTIVE Hemodynamic stress, such as hypertension, induces pathological cardiac hypertrophy, leading to heart failure. There is growing evidence that modulating components of diet affects cardiac function in humans, although the causality and underlying mechanisms are poorly understood. Our study demonstrates that strict restriction of dietary carbohydrates supplemented with either fat or proteins during acute hemodynamic stress attenuates the development and progression of cardiac hypertrophy and heart failure by activating distinct anti-hypertrophic and cardioprotective signaling mechanisms. The study suggests that it would be useful to investigate the therapeutic benefit of carbohydrate restriction in patients with hypertension and cardiac hypertrophy in clinical studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []