Macrocycle and substituent vibrational modes of nonplanar nickel(II) octaethyltetraphenylporphyrin from its resonance Raman, near-infrared-excited FT Raman, and FT-IR spectra and deuterium isotope shifts

1993 
We have employed Raman dispersion, FT Raman, and FT-IR spectroscopy to identify a large number of resonance Raman lines of Ni(II) octaethyltetraphenylporphyrin dissolved in CS[sub 2]. The Raman depolarization dispersion technique was used to derive the symmetry of the normal modes giving rise to the observed Raman lines. By combining this information and the already available normal coordinates of Ni(II) tetraphenylporphyrin and Ni(II) octaethylporphyrin, many of the Raman-modes of the macrocycle could be assigned. Some resonance-enhanced Raman lines were found to arise from vibrations of the ethyl and phenyl substituents. They were identified by comparing resonance Raman, FT Raman, and FT infrared spectra of the Ni(II) octaethyltetraphenylporphyrin and its d[sub 20] isotopomer. All Raman lines normally referred to as core-size markers are found to be significantly shifted to lower frequencies with respect to their positions in Ni(II) octaethylporphyrin, in accordance with earlier findings (Shelnutt et al., J. Am. Chem. Soc. 113, 4077, 1991). This suggests that the molecule is in a highly nonplanar conformation. This notion is further corroborated by the strong dispersion of the depolarization ratio observed for nearly all A[sub 1g] and A[sub 2g] modes of the macrocycle. 27 refs., 13 figs., 2 tabs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    26
    Citations
    NaN
    KQI
    []