Electrically active defects in p-type silicon after alpha-particle irradiation

2017 
Abstract In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×10 6  cm −2 s −1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×10 10  cm −2 , the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (C i ) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    4
    Citations
    NaN
    KQI
    []