Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation

2020 
The relation between rotation speed, air pressure and the velocity of air-rotary drilling using the down the hole method is determined in an empirical manner. For the study, velocity measurements are obtained for combinations of the aforementioned parameters during fieldwork for the installation of borehole heat exchangers near Lublin, Poland. The tests consider three drill bit diameters—110, 127 and 140 mm; three rotational speeds—20, 40 and 60 1/min; and three air pressures—16, 20 and 24 bar. The borehole heat exchangers need 100 m deep wells. The lithology consists mainly of loess and clays to 24 m, sand and carbonate rocks to 36 m, and marls and limestone to 100 m. It is found that the highest drilling velocity is achieved when the greatest pressure is applied, while the lowest drilling velocity is connected to the lowest pressure. However, the relation between rotation speed and drilling velocity is more complex, as drilling velocity seems to be more affected by depth. Therefore, lithology can be a major factor. The results may find direct use in drilling, and provide a basis for further studies on the optimization of drilling technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    3
    Citations
    NaN
    KQI
    []