Configuration of readout electronics and data acquisition for the HiPERCAM instrument

2018 
© 2018 SPIE. HiPERCAM is a five channel fast photometer to study high temporal variability of the universe, covering from 0.3 to 1.0 microns in five wavebands. HiPERCAM uses custom-made 2Kx1K split-frame transfer CCDs mounted in separate compact camera heads and cooled by thermoelectric coolers to 180K. The demands on the readout system are very unique to this instrument in that all five CCDs are operated in a pseudo drift window mode along with the normal windowing, binning and full-frame modes. The pseudo drift mode involves reading out small window regions from 2 quadrants of each CCD, with the possibility to exceed 1 kHz window rates per output channel. The CCDs are custom manufactured by Teledyne e2v to allow independent serial clock controls for each output. The devices are manufactured in standard and deep-depletion processes with appropriate anti-reflection coatings to achieve high quantum efficiencies in each of the five wavebands. An ESO NGC controller has been configured to control and readout all five CCDs. The data acquisition software has been modified to provide GPS timestamping of the data and access to the acquired data in real time for the data reduction software. The instrument has had its first light and first science observations on the 4.2m William Herschel Telescope, La Palma during a commissioning run in October 2017 and subsequently on the 10.4m Gran Telescopio Canarias in February 2018 and science observations in April 2018. This paper will present the details of the preamplifier electronics, configuration of the readout electronics and the data acquisition software to support the unique readout modes along with the overall performance of the instrument.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []