Eternal solutions of the Boltzmann equation near travelling Maxwellians
2006
Abstract It is shown in this paper that the Cauchy problem of the Boltzmann equation, with a cut-off soft potential and an initial datum close to a travelling Maxwellian, has a unique positive eternal solution. This eternal solution is exponentially decreasing at infinity for all t ∈ ( − ∞ , ∞ ) , consequently the moments of any order are finite. This result gives a negative answer to the conjecture of Villani in the spatially inhomogeneous case.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
2
Citations
NaN
KQI