Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing

2014 
A flexible strain gauge is an essential component in advanced human-machine interfacing, especially when it comes to many important mobile and biomedical appliances that require the detection of finger touches. In this paper, we report one such strain gauge made from a strip of nanoparticle monolayer onto a flexible substrate. This proposed gauge operates on the observation that there is a linear relationship between electrical conduction and mechanical displacement in a compressive state. Due to its prompt temporal response, the gauge can accurately track various mechanical stimuli running at the frequencies of interest. Experiments have confirmed that the proposed strain gauge has a strain detection limit as low as 9.4 × 10−5, and its gauge factor can be as large as 70, making this device particularly suitable for sensitive finger touch sensing. Furthermore, negligible degradation in the gauge's output electrical signal is observed even after 9000 loading/unloading cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    12
    Citations
    NaN
    KQI
    []