Simulation Permeable Porous Materials of the Complex Shape During Radial-Isostatic Compression

2021 
Recent years have been characterized by a significant increase in the use of compaction processes for permeable porous materials. It is at this moment that the traditional schemes and technologies for producing products are continually being improved, and progressive methods of pressing, in particular, radial-isostatic pressing, are being used. Therefore, along with traditional research methods, the method of preliminary computer modelling and prediction of the behaviour of powder materials in the process of compaction, and the creation of appropriate mathematical models, are increasingly used. In this article, the process of compaction of permeable porous materials of complex shape made of BBS15 steel powder by radial-isostatic pressing is studied using computer simulation. The regularities of compaction of products-filters of complex shapes in the form of a flask are considered. It was found that when compressing permeable porous materials of complex shape, the distribution of the porosity value is uneven. As the radius increases, the porosity increases. It is shown that during the manufacture of filters of complex shape as a flask, the porosity distribution depends on the sealing scheme. Particularly, the wall material is compacted more intensively during radial pressing. Additionally, the filter bottom material is compacted more intensively during axial pressing. The simulation is based on a continuum approach. The ratio of the porous body’s plasticity theory was used as the determining relations. The determination of the workpiece shape, compaction, and density, stress, and strain fields is based on the finite element method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []