Iterative learning control-based tracking synchronization for linearly coupled reaction-diffusion neural networks with time delay and iteration-varying switching topology

2021 
Abstract In this paper, the D-type iterative learning control (ILC) protocol based on the local neighbor information is designed to achieve tracking synchronization for linearly coupled reaction-diffusion neural networks in presence of time delay and iteration-varying switching topology under a repetitive environment. Firstly, based on non-collocated sensors and actuators network, the proposed D-type ILC update law can realize tracking synchronization by utilizing output tracking errors. Then, by virtue of the contraction mapping principle, the sufficient convergence conditions of tracking synchronization errors are presented under the fixed commutation topology. Subsequently, the synchronization conclusions are extended to the iteration-varying commutation topology scenario. Finally, two numerical examples are provided to verify the efficacy of the obtained results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []