Arginine site 264 in murine estrogen receptor alpha is dispensable for the regulation of the skeleton.

2020 
Estrogen protects against bone loss, but is not a suitable treatment due to adverse effects in other tissues. Increased knowledge regarding estrogen signaling in estrogen-responsive tissues is therefore warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor alpha (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo; albeit the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate if R264 in ERα is involved in the regulation of the skeleton in vivo. DXA analysis at three, six, nine, and twelve months of age showed no differences in total body areal BMD between R264A and WT in either female or male mice. Furthermore, analyses using CT demonstrated that trabecular bone mass in tibia and vertebra, and cortical thickness in tibia, were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass, as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []