Characterization of SiC Ceramic Tube Prepared by the Combined CVI and CVD Process

2014 
SiCf/SiC composites are one of the candidates for high temperature structural applications because of their high strength and corrosion resistance under severe conditions and stability under neutron irradiation [1~3]. A silicon carbide fuel cladding for the light water cooled reactors (LWRs) may allow a number of advances, including: the increased safety margins under transients and accident scenarios, such as loss of coolant accident; the improved resource utilization via a higher burn-up beyond the present limit of 62 GWd/MTU; and improved waste management [3~5]. Some components of SiCf/SiC composite will be applied as tubular geometry for the high-temperature core parts. The proposed design of an advanced LWR fuel cladding, referred to as Triplex, consists of three layers: an inner SiC monolith, a central SiCf/SiC composite, and an outer dense SiC evrionmental barrier coating. The inner SiC layer provides the strength and hermeticity to contain fission products. The SiCf/SiC composite layer fabricated by the CVI process provides a pseudo-ductile failure mode. The outer SiC thin coating layer protects against corrosion [5]. The chemical vapor deposition (CVD) technique is an effective approach for the fabrication of SiCf/SiC composite and coated SiC monolith [6]. To increase the homogeneity of the microstructure and the deposition rate of a SiC tube, the process parameters should be optimized and modified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    4
    Citations
    NaN
    KQI
    []