Direct separation and purification of α-lactalbumin from cow milk whey by aqueous two-phase flotation of thermo-sensitive polymer/phosphate.

2021 
BACKGROUND α-lactalbumin (α-La) is of great interest to the industry as a result of its excellent functional properties and nutritional value. Aqueous two-phase flotation (ATPF) of thermo-sensitive polymer poly (ethylene glycol-ran-propylene glycol) monobutyl ether (UCON) and KH2 PO4 was applied to directly separate and purify α-La from milk whey, which was purposed to simplify the production process and reduced cost of production. RESULTS The effect of ATPF composition and operating parameters on the flotation efficiency (E) and purity of α-La were investigated. The optimal conditions included 2 min of premixing time, 30 mL min-1 flow velocity and 20 min of flotation time, whereas the composition conditions comprised 35.0 mL 0.18 g mL-1 phosphate solution (containing 10% (cow milk whey/salt solution, v/v) cow milk whey, 50 ppm defoamer and 2 g NaCl) and 5.0 mL of 40% (w/w) UCON solution. Under the optimal conditions, E of α-La was 95.67 ± 1.04% and purity of α-La was 98.78 ± 1.19%. UCON was recovered by a thermally-induced phase separation and reused in next ATPF process without reducing E of α-La. Purified α-La was characterized by several key technologies. The results indicated that α-La in cow milk whey could be directly separated and purified by the ATPF and the purity was satisfactory. Moreover, it was suggested there was no obvious structure difference between the α-La separated by ATPF and the α-La standard. CONCLUSION The present study enabled the recycling of UCON, providing an effective, economically viable and environmentally friendly approach for the separation and purification of protein. © 2021 Society of Chemical Industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    6
    Citations
    NaN
    KQI
    []