Forced convection during feedback approach curve measurements in scanning electrochemical microscopy: maximal displacement velocity with a microdisk.

2012 
In scanning electrochemical microscopy (SECM), an approach curve performed in feedback mode involves the downward displacement of a microelectrode toward a substrate while applying a bias to detect dissolved electroactive species at a diffusion-limited rate. The resulting measured current is said to be at steady state. In order to reduce the required measurement time, the approach velocity can be increased. In this paper, we investigate experimentally and theoretically the combination of diffusion and convection processes related to a moving microdisk electrode during feedback approaches. Transient modeling and numerical simulations with moving boundaries are performed, and the results are compared to the experimental approach curves obtained in aqueous solution. The geometry and misalignment of the microelectrode influence the experimental approach curves recorded at high approach velocities. The effects are discussed through the decomposition of the current into transient diffusional, radial convectiona...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    18
    Citations
    NaN
    KQI
    []