The relation of ventromedial prefrontal cortex activity and heart rate fluctuations at rest
2009
Recent studies applying functional magnetic resonance imaging have focused on the description of cerebral substrates of changes in cardiac function during diverse autonomic maneuvers or stressful cognitive tasks. These studies might be limited by the indistinguishable neuronal activity due to cognitive processes, which are known to influence autonomic function, and the ‘baseline’ activity in the central autonomic network. We therefore investigated 26 healthy volunteers in the magnetic resonance scanner to simultaneously obtain functional brain images and RR intervals (intervals between ventricular depolarizations) of the high-resolution electrocardiogram. The mean RR interval length within each functional scan was computed, which was finally convolved with the canonical hemodynamic response function to obtain a regressor for the functional time series. The resulting individual contrast image indicated a positive covariation of the blood oxygen level-dependent signal and RR interval length in the ventromedial prefrontal cortex (vmPFC). Furthermore, a reduced mean cross-approximate entropy value was shown for the interaction between the vmPFC and individual RR intervals. This suggests reduced asynchrony between the heart rate and vmPFC activity in contrast to other brain areas. Our findings confirm data obtained in animals describing the vmPFC as an important forebrain structure of the central autonomic network and an influence of the vmPFC in the cortical generation of efferent vagal activity. This finding needs to be investigated in diseases with known suppression of efferent vagal modulation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
67
References
48
Citations
NaN
KQI